(2)

1 (a) Complete the table of values for $y = \frac{1}{2}x^3 - 2x + 3$

x								
у	-4.5	3	4.5	3	1.5	3	10.5	(2)

When
$$x=-2$$
, $y=\frac{1}{2}(-2)^3-2(-2)+3$

when
$$x = 1$$
, $y = \frac{1}{2}(1)^3 - 2(1) + 3$

$$\frac{1}{2}(-8)+4+3=3$$

$$=\frac{1}{2}(1)-2+3=1.5$$

when
$$x=-1$$
, $y=\frac{1}{2}(-1)^3-2(-1)+3$

$$= \frac{1}{2}(1) - 2 + 3 = 1.5$$
when $x = 3$, $y = \frac{1}{2}(3)^3 - 2(3) + 3$

(b) On the grid, draw the graph of $y = \frac{1}{2}x^3 - 2x + 3$ for $-3 \le x \le 3$

(c) By drawing a suitable straight line on the grid, find an estimate for the solution of the equation $\frac{1}{2}x^3 - x + 4 = 0$

$$\frac{1}{2}x^{3}-x+4=0$$

$$\frac{1}{2}x^{3}-2x+3=-x-1$$

$$x =$$
 (2)

(Total for Question 1 is 6 marks)

2 The diagram shows the graph of y = f(x) for $-4 \le x \le 12$

The point *P* on the curve has *x* coordinate 2

(a) (i) Use the graph to find an estimate for the gradient of the curve at P.

$$m = \frac{3.6 - 1.2}{0 - 4}$$

$$= -0.6$$

(ii) Hence find an equation of the tangent to the curve at P. Give your answer in the form y = mx + c

$$y = mx + c + y - intercept$$

 $y = -0.6x + 3.6$

$$y = -0.6x + 3.6$$
(2)

The equation f(x) = k has exactly two different solutions for $-4 \le x \le 12$

(b) Use the graph to find the two possible values of k.

3 Here are six graphs.

Complete the table below with the letter of the graph that could represent each given equation.

Write your answers on the dotted lines.

Equation	Graph	
$y = \frac{2}{x^2}$	c (i)	- y will always be
$y = -\frac{1}{2}x^3$	8 ()	
$y = -\frac{5}{x}$	E (i)	

(Total for Question 3 is 3 marks)

4 (a) Complete the table of values for $y = \frac{1}{x}(x^2 + 4)$

x	0.25	0.5	1	2	4	8
у	16.25	8.5	5	4	5	8.5

!)

(2)

(b) On the grid, draw the graph of $y = \frac{1}{x}(x^2 + 4)$ for $0.25 \le x \le 8$

(Total for Question 4 is 4 marks)

5 The point A is the only stationary point on the curve with equation $y = kx^2 + \frac{16}{x}$ where k is a constant.

Given that the coordinates of A are $\left(\frac{2}{3}, a\right)$

find the value of a.

Show your working clearly.

Stationary Point =
$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = 2kx - \frac{16}{x^2} = 0$$

$$2kx^2 - \frac{16}{x^2} = 0$$

$$2kx^3 - 16 = 0$$

$$kx^3 = \frac{16}{2}$$

$$kx^3 = 8$$

$$x^3 = \frac{8}{k}$$

$$x = \sqrt{\frac{8}{k}}$$

Given
$$x = \frac{2}{3}$$
,
$$\frac{2}{3} = \sqrt{\frac{8}{k}}$$

$$k = 27$$

Substitute k=27 and $x=\frac{2}{3}$ into equation of curve:

$$y = 27 \left(\frac{2}{3}\right)^2 + \frac{16}{\frac{2}{3}}$$

= 36

36

6 The diagram shows a sketch of part of the curve with equation $y = x^2 - \frac{p}{x}$ where p is a positive constant.

For all values of p, the curve has exactly one turning point and this turning point is a minimum shown as the point T in the sketch.

For the curve where the x coordinate of T is -3

(a) find the value of p

turning point:
$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = 2x + \frac{\rho}{x^2} = 0$$

When
$$x = -3$$

$$2(-3) + \frac{p}{(-3)^2} = 0$$

$$p = 5 + 0$$

The line with equation y = k is a tangent to the curve with equation $y = x^2 - \frac{16}{x}$

(b) Find the value of k

tangent =
$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = 2x + \frac{16}{x^2} - 0$$

$$2x + \frac{16}{x^2} = 0$$

$$2x^3 + 16 = 0$$

$$x^3 = -\frac{16}{2}$$

$$x^3 = -8$$

$$x = \sqrt[3]{-8}$$

$$x = -2$$

$$y = (-2)^2 - \frac{16}{-2}$$

$$4 + 8$$

$$= 12$$
(3)

(Total for Question 6 is 7 marks)

k=y=12

7 Here are nine graphs.

Graph A

Graph B

Graph C

Graph D

Graph E

Graph F

Graph G

Graph H

Graph I

Complete the table below with the letter of the graph that could represent each given equation. Write each answer on the dotted line.

Equation y-interc	Graph	
y = -2x + 3	C	
$y = -\frac{1}{x}$	F	
$y = \tan x^{\circ}$	D	3
y = (x + 1)(x - 1)(x - 2)	Н	

(Total for Question 7 is 3 marks)

(2)

8 (a) Complete the table of values for $y = \frac{6}{x}$

x	0.5	1	2	3	4	5	6
у	12	6	3	2	1.5	1.2	1

(b) On the grid, draw the graph of $y = \frac{6}{x}$ for $0.5 \le x \le 6$

9 The curve **C** has equation $y = ax^3 + bx^2 - 12x + 6$ where a and b are constants.

The point A with coordinates (2, -6) lies on \mathbb{C} The gradient of the curve at A is 16

Find the *y* coordinate of the point on the curve whose *x* coordinate is 3 Show clear algebraic working.

$$-6 = a(2)^{3} + b(2)^{2} - 12(2) + 6$$

$$-6 = 8a + 4b - 24 + 6$$

$$8a + 4b = 12 - 0$$

gradient,
$$\frac{dy}{dx} = 3ax^2 + 2bx - 12$$

$$16 = 3q(2)^{2} + 2b(2) - 12$$

$$16 = 120 + 46 - 12$$

$$y = 4(3)^3 - 5(3)^2 - 12(3) + 6(1)$$

$$= 108 - 45 - 36 + 6$$

$$= 33(1)$$

,_

10 (a) Complete the table of values for $y = x^3 - 3x + 2$

Х	-2	-1	-0.5	0	1	1.5	2
У	0	4	3.4	2	0	0.9	4

(b) On the grid, draw the graph of $y = x^3 - 3x + 2$ for values of x from -2 to 2

(c) By drawing a suitable straight line on the grid, use your graph to find an estimate for the solution of

$$2x^3 - 3x + 4 = 0$$

Give your answer correct to one decimal place.

$$2 \times y = (x^3 - 3x + 2) \times 2$$

 $2y = 2x^3 - 6x + 4$
 $= 2x^3 - 3x + 4 = 0$

$$y = -3x$$

$$y = -\frac{3}{2}x$$

(Total for Question 10 is 7 marks)

11 (a) Complete the table of values for $y = \frac{2}{x} \left(5 - \frac{1}{x} \right)$

	0.5					5
у	12	8	4.5	3.1	2.4	1.9

(1)

(b) On the grid, draw the graph of $y = \frac{2}{x} \left(5 - \frac{1}{x} \right)$ for $0.5 \leqslant x \leqslant 5$

(Total for Question 11 is 3 marks)

(2)

12 Here are six graphs.

Complete the table below with the letter of the graph that could represent each given equation.

Write your answers on the dotted lines.

Equation	Graph
$y = -\frac{2}{x}$	В
$y = 5 - x^2$	A (3)
$y = -2x^3$	F

(Total for Question 12 is 3 marks)

13 Here are six graphs.

Write down the letter of the graph of

(a)
$$y = \frac{10}{x^2}$$
 (reciprocal with positive values of y)

(1)

(b)
$$y = x - 3 + 3x^2 - x^3$$

C (1)

(c)
$$y = -\frac{3}{x}$$

B (1)

(Total for Question 13 is 3 marks)

14 Here are 6 graphs.

Complete the table below with the letter of the graph that could represent each given equation.

Write your answers on the dotted lines.

Equation	Graph
$y = \sin x$	c ①
$y = -\frac{3}{x}$	1) 4
$y = 4x^3 - 5x$	A (1)